

Initiation of RVD Response in Human Platelets: Mechanical-Biochemical Transduction Involves Pertussis-Toxin-Sensitive G Protein and Phospholipase A₂

Alon Margalit¹, Avinoam A. Livne*, Jørgen Funder², Yosef Granot¹

¹Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel

²Department of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark

Received: 29 April 1993/Revised: 12 July 1993

Abstract. Platelets revert hypotonic-induced swelling by the process of regulatory volume decrease (RVD). We have recently shown that this process is under the control of endogenous heparin A₃. In this work, we investigated the mechanical-biochemical transduction that leads to heparin A₃ formation. We demonstrate that this process is mediated by pertussis-toxin-sensitive G protein, which activates Ca²⁺-insensitive phospholipase A₂, and the sequential release of arachidonic acid. This conclusion is supported by the following observations: (i) RVD response is blocked selectively by the phospholipase A₂ inhibitors manolide and bromophenacyl-bromide (0.2 and 5 μM, respectively) but not by phospholipase C inhibitors. The addition of arachidonic acid overcame this inhibition; (ii) extracellular Ca²⁺ depletion by EGTA (up to 10 mM) does not affect RVD; (iii) intracellular Ca²⁺ depletion by BAPTA-AM (100 μM) inhibits RVD but not heparin A₃ formation, as tested by the RVD reconstitution assay; (iv) RVD is inhibited by the G-protein inhibitors, GDP_βS (1 μM) and pertussis toxin (1 ng/ml). This inhibition is overcome by addition of arachidonic acid or hypotonic cell-free eluate that contains heparin A₃; (v) NaF, 1 mM, induces heparin A₃ formation, tested by the RVD reconstitution assay; and (vii) GDP_βS inhibits heparin A₃ formation associated with flow. Therefore, it seems that G proteins are involved in the initial step of the mechanical-biochemical transduction leading to heparin A₃ formation in human platelets.

Key words: Human platelets — Regulatory volume decrease — Heparin A₃ — Phospholipase A₂ — G proteins — Mechanically induced activation

Introduction

When human blood platelets are exposed to hypotonic medium, they swell first, but, shortly thereafter, revert toward their original volume, expressing the process of regulatory volume decrease (RVD). Platelet RVD is mediated by enhanced independent K⁺ and Cl⁻ effluxes and associated water (Livne, Grinstein & Rothstein, 1987). The RVD response of human platelets is controlled by a distinct lipoxygenase-derived product, which elevates exclusively K⁺ current (Margalit & Livne, 1991). This product has been identified as heparin A₃ (Margalit et al., 1993). Heparin A₃ was also detected after submission of platelets to centrifugation and laminar flow (Margalit & Livne, 1992), which indicates that heparin A₃ metabolism in human platelets is initiated by a common mechanical-biochemical transduction mechanism.

Although the RVD response has been investigated in many cell types, the mechanisms by which the cells sense volume change and initiate RVD response are not well understood (for review, see: Hoffmann & Simonsen, 1989; Sarkadi & Parker, 1991). Stretch-activated K⁺ channels (Sackin, 1989) or stretch-activated Ca²⁺ channels (Christensen, 1987; Lansman, Hallam & Rink, 1987) have been suggested as mechanoreceptors for RVD, but since these experiments were done by patch clamping of membranes, it is not clear if such mechanisms exist *in vivo*. At least in human platelets, stretch-activated K⁺ channels are not involved, since K⁺ cur-

* Deceased

Correspondence to: Y. Granot

rents associated with RVD are inhibited by lipoxygenase inhibitors (Margalit & Livne, 1991).

Hepoxilin A₃ is an arachidonic acid (AA) metabolite of the 12-lipoxygenase pathway (Pace-Asciak & Aszota, 1989). Its biosynthesis in RVD would be initiated by the release of AA from the cell membrane by phospholipases. Several mechanisms of the activation of phospholipases have been suggested, including $[Ca^{2+}]_i$ elevation (Baron & Limbird, 1988), phosphorylation (Wijkander & Sundler, 1992, Nemerson et al., 1993) and involvement of GTP-binding proteins (Axelrod, 1990; Fain, 1990).

In this work, we study the mechanism by which human platelets initiate RVD response. It is demonstrated that heparin A₃ metabolism in intact platelets is initiated by Ca^{2+} -insensitive phospholipase A₂ (PLA₂). This phospholipase is activated by pertussis-toxin-sensitive G protein. On the basis of our findings, we suggest that this G protein is activated by mechanical stresses, probably by G-protein-associated mechanoreceptors.

Materials and Methods

REAGENTS AND SOLUTIONS

Nordihydroguaiaretic acid (NDGA), guanosine 5'-O-(2-thiodiphosphate) (GDP_βS), pertussis toxin (PTX), neomycin sulfate, staurosporine and arachidonic acid (AA) were obtained from Sigma (St. Louis, MO). Nicotinamide adenine [adenylate-³²P] dinucleotide (³²P-NAD) was obtained from Amersham (Buckinghamshire, UK). [bis-(*o*-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxyethyl)-ester] (BAPTA-AM) was obtained from Molecular Probes (Eugene, OR). Wortmannin was purchased from Sandoz (Basel, Switzerland). Manoalide was kindly provided by Dr. U. Zor, The Weizmann Institute of Science, Rehovot, Israel. The acid-citrate-dextrose (ACD) solution was composed of 65 mM citric acid, 11 mM glucose and 85 mM trisodium citrate. The standard isotonic medium contained (mM) 137 NaCl, 1 KCl, 0.42 NaH₂PO₄, 0.5 MgCl₂, 5.5 glucose, and 20 HEPES, pH 7.4, adjusted to 285 mOsm. Hypotonic solutions were prepared by 1:1 dilution of the standard isotonic medium with distilled water. Media were filtered through a 1.2 μ membrane filter (Schleicher & Schuell, AE 9S) to remove particles that interfere with the cell sizing measurement. Stock solution of NDGA (20 mM), AA (10 mM) and manoalide (1 mM) were made in ethanol, stock solutions of GDP_βS (1 mM) and PTX (0.1 μ g/ml) were made in water. Stock solutions of wortmannin (100 mM), neomycin (100 mM), and BAPTA-AM (50 mM) were made in dimethyl sulfoxide. The organic solvent concentrations in the experiments did not exceed 0.2%. Incubation of platelets with the organic solvents (up to 60 min) did not, by itself, affect RVD.

PREPARATION OF PLATELET-RICH PLASMA (PRP)

Venous blood was obtained from healthy volunteers, aged 20–40 years, who had not taken any medication in the preceding 14 days. Blood was collected in plastic tubes with ACD solution at

a volume ratio of blood/anti-coagulant of 6/1. PRP was obtained by centrifugation at 150 \times g for 10 min and had a pH of 6.5 \pm 0.1. Platelets were used within 3 hr of the collection time.

VOLUME MEASUREMENTS AND RVD ASSESSMENTS

Cell volume distribution curves were obtained using a Coulter Counter model ZM with Coulter Channelizer 256, with an orifice diameter of 70 μ m. The mean cell volume was calculated as the median of the cell volume distribution curves. Volume measurements commenced within 20 sec after the addition of platelets and lasted for 3 min. The relative volume relates to the cell volume in isotonic medium. The RVD rate was determined by the logarithmic change in relative volume during the time interval of 40–150 sec after the exposure of the platelets to hypotonic medium.

RVD RECONSTITUTION ASSAYS

The RVD reconstitution assays were based on the ability of endogenous heparin A₃, present in cell-free eluates, to reform RVD of platelets in the presence of lipoxygenase inhibitors (Margalit et al., 1993). Hypotonic cell-free eluates were prepared as follows: aliquots of 200 μ l PRP, containing 4–5 \times 10⁷ platelets, were mixed with an equal volume of distilled water and 600 μ l of hypotonic solution. After 15 sec (or as indicated), NDGA was added and the suspension was centrifuged in a Juan microfuge (Hawksley, UK) for 30 sec. A sample of 200 μ l of the cell-free eluate was added prior to PRP, to a Coulter vial containing 10 ml of hypotonic solution in the presence of various RVD inhibitors. The volume measurements were performed as described above. Flow-derived cell-free eluates were prepared as follows: aliquots of 200 μ l PRP, containing 4–5 \times 10⁷ platelets, were mixed with 800 μ l of isotonic solution. The suspensions were drawn into a 1 ml syringe and exposed to flow stress by utilizing a "controlled-flow device" as described previously (Margalit & Livne, 1992). Thereafter, the cell-free eluates were prepared as described for hypotonic eluate and tested for their ability to reconstitute RVD.

ADP-RIBOSYLATION

PRP (20 ml, 4 \times 10⁸ cells/ml) were centrifuged once (750 \times g, 10 min) and the platelet pellet was suspended in 4 ml of isotonic solution in the presence of 0.3% bovine serum albumin (Sigma). For each experiment, 475 μ l of the platelet suspension was mixed with an equal volume of isotonic solution (control) or distilled water (for hypotonic shock). The incubation was terminated, at the indicated times, by the addition of 50 μ l of 20 \times ADP-ribosylation cocktail, as described by Lapetina, Reep and Chang (1986), 1 \times : 25 μ g/ml saponin, 5 μ g/ml pertussis toxin (preactivated with 1 mM dithiothreitol), 20 μ M NAD, 10 μ Ci/ml ³²P-NAD, 1 mM ATP, 1 mM EDTA and 10 mM thymidine. The suspension was incubated for 30 min, 37°C. After incubation, saponized platelets were fractionated by centrifugation for 160 sec in a Juan microfuge (Hawksley, UK). The supernatant was discarded and the pellet resuspended in 100 μ l of sample buffer, consisting of 3% SDS, 0.0015% bromophenol blue, 5% 2-mercaptoethanol, 11% glycerol, 70 mM Tris HCl, pH 6.8. The samples were heated to 100°C

for 5 min and subjected to 11% SDS-PAGE. ADP-ribosylation of proteins was determined by autoradiography.

Results

PHOSPHOLIPASE A₂ INITIATES HEPOXILIN A₃ METABOLISM

To study the role of different phospholipases in platelet RVD, we incubated 10 μ l of PRP for 30 min in 5 ml of isotonic solution in the presence of different phospholipases inhibitors. At the end of the incubation, the platelets were submitted to hypotonic shock by the addition of 5 ml of distilled water, and tested for RVD. The phospholipase A₂ (PLA₂) inhibitor manoolide (Lister et al., 1989), inhibited RVD in a dose-dependent manner. Complete inhibition of RVD was obtained at 0.2 μ M (Fig. 1A). Platelet-RVD was also inhibited by the PLA₂ inhibitor, bromophenacyl bromide (Blackwell & Flower, 1983). By contrast, the phospholipase C inhibitor, neomycin (Burch, Luini & Axelrod, 1986) and the phospholipase C/D inhibitor, wortmannin (Bonser et al., 1991), were ineffective (Table). As seen in Fig. 1B, addition of AA (1 μ M) to platelets pretreated with manoolide (0.2 μ M) restored the RVD response. By contrast, AA was ineffective when RVD was inhibited with the lipoxygenase inhibitor NDGA (20 μ M), which acts downstream to AA liberation (Fig. 7). We conclude, therefore, that phospholipase A₂ modulates arachidonic acid liberation and hepoxilin A₃ metabolism in response to hypotonic shock.

Ca²⁺ MOBILIZING AND PROTEIN KINASE INHIBITORS DO NOT AFFECT RVD RESPONSE

To evaluate a possible role of Ca²⁺ influxes on the initiation of RVD response, we exposed platelets to standard hypotonic solution in the presence of the Ca²⁺ chelator EGTA at concentrations of 1 and 10 mM. As seen in Fig. 2A, EGTA (10 mM) did not affect platelet RVD. These results are in agreement with the EGTA effect on RVD response of lymphocytes (Grinstein, Dupre & Rothstein, 1982) and Ehrlich ascites tumor cells (Hoffmann, Simonsen & Lambert, 1984). To study the role of intracellular Ca²⁺ on RVD, we incubated human platelets for 60 min with 100 μ M of the intracellular Ca²⁺ chelator BAPTA-AM (Smith et al., 1992). At the end of the incubation, the platelets were subjected to hypotonic shock and tested for RVD response. As seen in Fig. 2B, BAPTA-AM did indeed inhibit platelet RVD. To study if the Ca²⁺ effect on platelet RVD is downstream or upstream to hepoxilin A₃ forma-

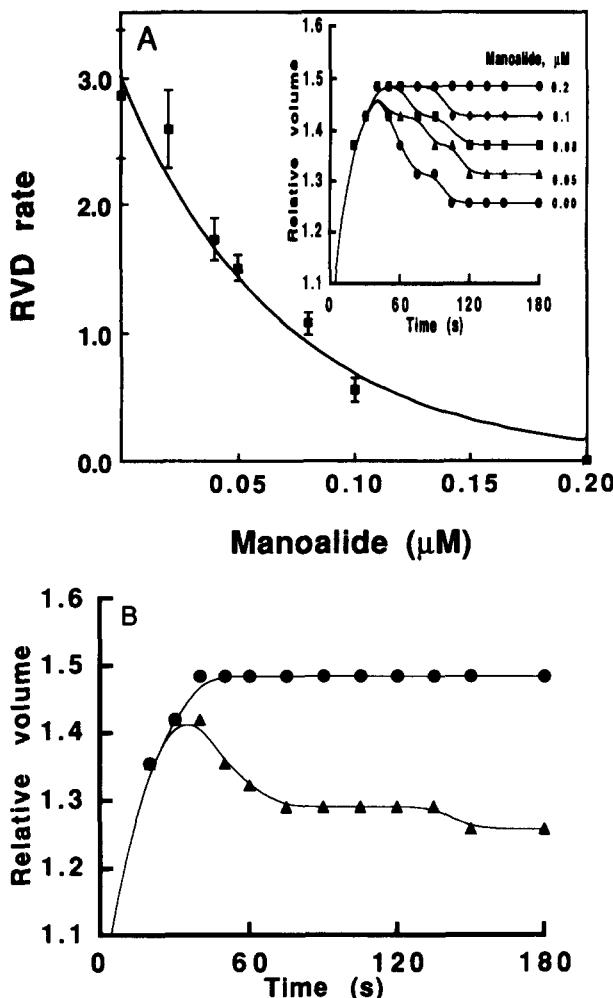
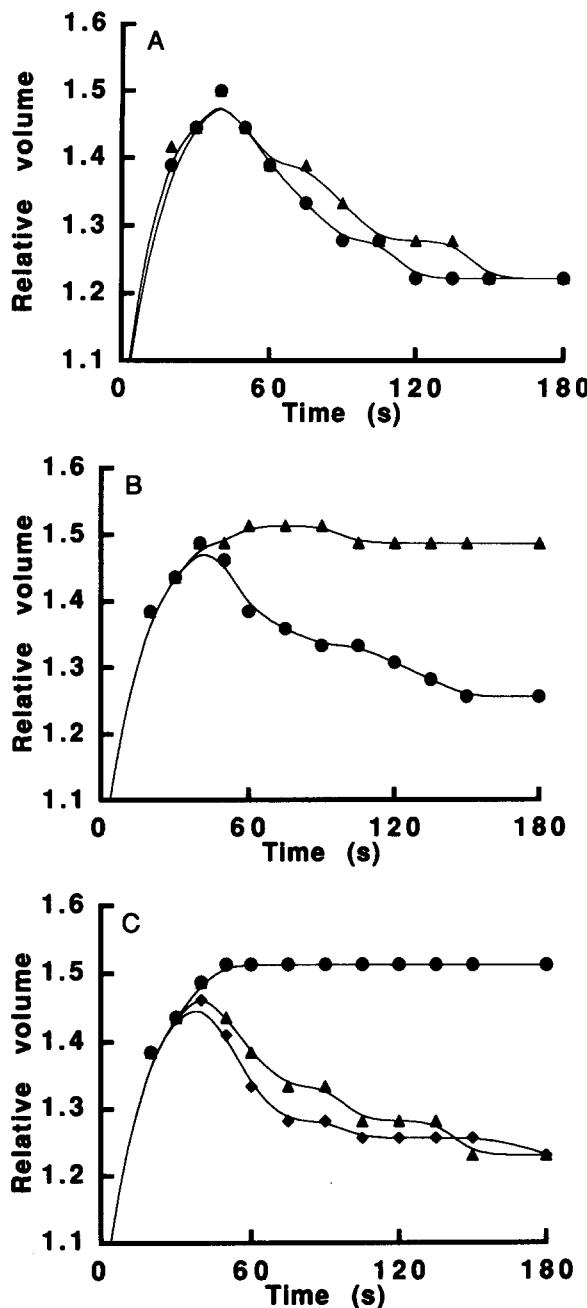
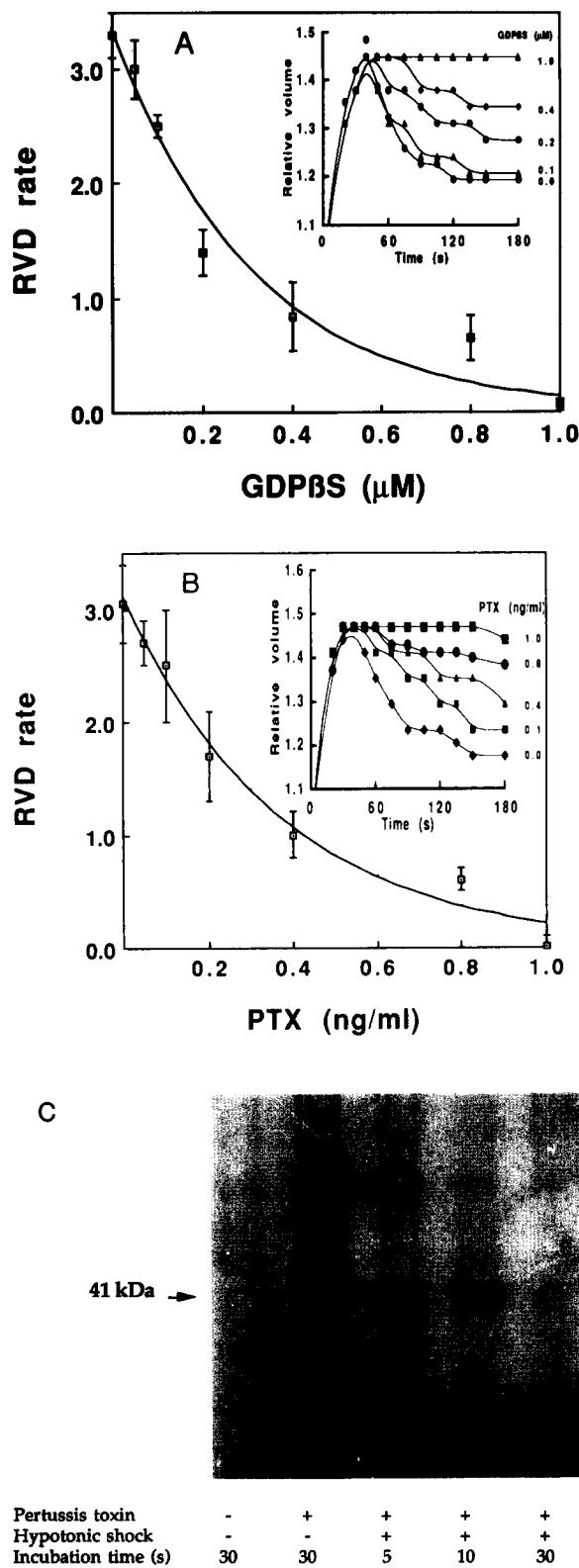



Fig. 1. Effect of manoolide on platelet RVD. (A) Inhibition of RVD rate by manoolide (mean \pm SE, $n = 3$). RVD rate is determined as the log (relative vol/sec) $\times 10^3$. Representative experiment is shown in the inset. (B) RVD reconstitution by 1 μ M arachidonic acid of platelets pretreated with manoolide 0.2 μ M (\blacktriangle); or NDGA, 20 μ M (\bullet). (representative data, $n = 3$).


tion (cf. Fig. 7.), we submitted platelets pretreated with BAPTA-AM to the RVD reconstitution assay. As seen in Fig. 2C, addition of hypotonic cell-free eluate from platelets pretreated with BAPTA-AM, an indication for endogenous hepoxilin A₃ production, resumes RVD of platelets in the presence of NDGA. By contrast, addition of hypotonic-derived eluate to platelets pretreated with BAPTA-AM, an indication for external hepoxilin A₃ effect, did not restore RVD (*data not shown*). These observations indicate that Ca²⁺ depletion by BAPTA-AM does not block hepoxilin A₃ synthesis, but rather inhibits the effect of hepoxilin A₃ on platelet RVD.

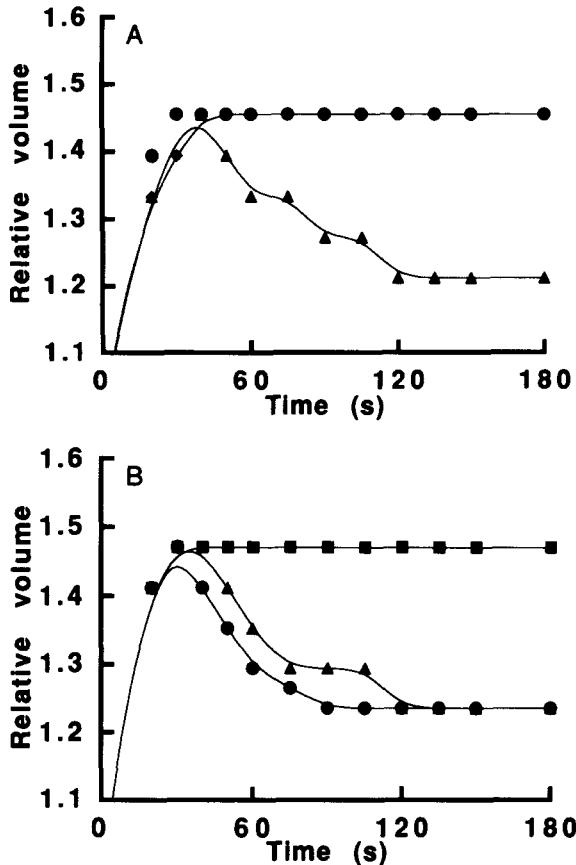
Lin, Lin and Knopf (1992) reported that the serine/threonine kinase inhibitor, staurosporine, inhibits AA release by cytosolic PLA₂. To test the

Fig. 2. Effect of Ca^{2+} on platelet RVD. (A) External Ca^{2+} depletion by EGTA. Control, (●); EGTA 10 mM, (▲) (representative data, $n = 3$). (B) Internal Ca^{2+} depletion by BAPTA-AM. Control, (●); platelets pretreated with BAPTA-AM (100 μM , 60 min), (▲) (representative data, $n = 3$). (C) RVD reconstitution assay in the presence of NDGA (20 μM). Isotonic cell-free eluate, (●); hypotonic cell-free eluate (exogenous heparin A₃), (◆); hypotonic cell-free eluate, platelets pretreated with BAPTA-AM for 60 min, (▲) (representative data, $n = 3$).

effect of this inhibitor on heparin A₃ metabolism, we incubated platelets with increasing concentrations of staurosporine before submission to hypotonic shock. As shown in the Table, staurosporine,

Fig. 3. Inhibition of RVD rate by (A) GDP_βS (mean \pm SE, $n = 3$). (B) PTX (mean \pm SE, $n = 4$). RVD rate is determined as in Fig. 1; representative experiments are shown in the insets. (C) Inhibition of PTX-induced ADP-ribosylation by hypotonic shock as a function of incubation time.

Table. The effect of different inhibitors on RVD of human platelets


Compound	Site	Effect on RVD
Manoalide	Phospholipase A ₂	Inhibition, IC ₅₀ = 0.076 ± 0.004 μM*
Bromophenacyl bromide	Phospholipase A ₂	Inhibition, IC ₅₀ = 1.2 ± 0.3 μM*
Neomycin	Phospholipase C	No inhibition at 200 μM
Wortmannin	Phospholipase C/D	No inhibition at 20 μM
Staurosporine	Serin/threonine kinases	No inhibition at 10 μM

* Mean ± SE.

up to 10 μM, did not affect RVD. At this concentration, staurosporine inhibits both serine/threonine as well as tyrosine kinase activities (Fujita-Yamaguchi & Kathuria, 1988).

PERTUSSIS TOXIN AND GDP_βS INHIBIT PLATELET RVD

Human PRP (10 μl, 3–4 × 10⁶ cells), were incubated for 30 min in 5 ml of isotonic solution in the presence of various concentrations of GDP_βS or PTX. At the end of the incubation, we added 5 ml of distilled water and performed volume measurements. As seen in Fig. 3A and B, both compounds inhibited the RVD response in a dose-dependent manner. Complete inhibition of RVD was obtained with 1 μM GDP_βS and 1 ng/ml PTX, indicating the high sensitivity of this response to G-protein inhibitors. Moreover, a hypotonic shock of 10 sec, inhibited ADP-ribosylation induced by PTX (Fig. 3C). This inhibition is associated with G-protein activation and the dissociation of α and βγ subunits (Lapetina et al., 1986; Gennity & Siess, 1991). The conclusion that G proteins are involved in RVD response is in agreement with the finding of le Maout et al. (1990) in rabbit kidney cells. Since heparin A₃ is released into the medium in response to hypotonic shock (Margalit & Livne, 1991; Margalit et al., 1993) and may act externally on the cell surface, G proteins may be involved in either the hypotonic shock-induced formation of heparin A₃, or the increased K⁺ permeability induced by heparin A₃, or both. To distinguish between these possibilities, we tested heparin A₃ formation of platelets pretreated with GDP_βS (1 μM, 30 min) by the RVD reconstitution assay. As demonstrated in Fig. 4A, addition of external heparin A₃ (hypotonic-derived eluate) restored RVD of platelets pretreated with GDP_βS. By contrast, when the cell-free eluates were prepared from platelets pretreated with GDP_βS, no heparin A₃ production could be detected by the RVD reconstitution assay. We conclude, therefore, that G proteins are involved in the formation of heparin A₃, rather than in its effect. To determine if G proteins are involved prior to AA release, we added 1 μM of

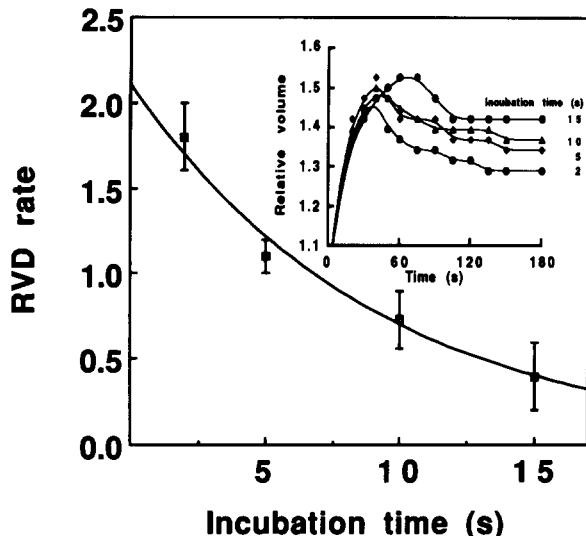


Fig. 4. (A) RVD reconstitution of platelets pretreated with 1 μM GDP_βS, by platelet-derived hypotonic eluate (▲), or hypotonic-derived eluate from platelets pretreated with GDP_βS (●) (representative data, $n = 3$). (B) The effect of AA (1 μM) on RVD response of platelets pretreated with GDP_βS, 1 μM (●); PTX, 1 ng/ml (▲); or NDGA, 20 μM (■) (representative data, $n = 3$).

AA to platelets pretreated with GDP_βS, PTX or the lipoxygenase inhibitor NDGA. As seen in Fig. 4B, addition of AA restored RVD of platelets pretreated with GDP_βS, or PTX but not with NDGA (cf. Fig. 7).

EFFECT OF NaF ON HEPARIN A₃ PRODUCTION

NaF is a known activator of G proteins (Bigay et al., 1987; Brom et al., 1989). To test if G-protein-

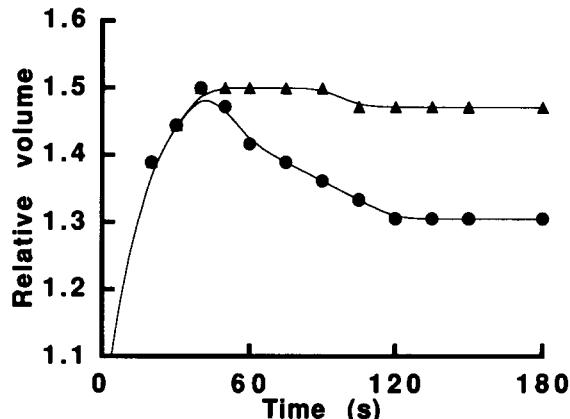


Fig. 5. NaF (1 mM) effect on hepoxilin A₃ production as a function of incubation time. Hepoxilin A₃ production is measured by the RVD reconstitution assay and expressed as RVD rate (mean \pm SE, $n = 3$). Representative experiment is shown in the inset.

activation by NaF results in hepoxilin A₃ formation, we assayed cell-free eluates from platelets exposed to 1 mM NaF during various incubation times for RVD reconstitution. As seen in Fig. 5, cell-free isotonic eluates from platelets preincubated with NaF reconstitute RVD of platelets exposed to hypotonic solution in the presence of NDGA. This activity was transient with $t_{1/2}$ of 8 sec, which is identical to the $t_{1/2}$ of hepoxilin A₃ catabolism in platelet suspensions (Margalit et al., 1993). We conclude that at this relatively low concentration of NaF, the hepoxilin A₃ pathway is only transiently activated.

EFFECT OF GDP_βS ON HEPOXILIN A₃ PRODUCTION IN RESPONSE TO LAMINAR FLOW

We have previously shown that platelets produce the same lipoxygenase-derived product in response to hypotonic shock, laminar flow and centrifugation (Margalit & Livne, 1992) and that this product could be identified as hepoxilin A₃ (Margalit et al., 1993). To verify if this type of activation is also under G-protein control, we subjected platelets pretreated with GDP_βS (1 μ M, 30 min) to a flow velocity of 250 cm/sec in 5 cm vinyl tubing, 1 mm ID. As seen in Fig. 6, GDP_βS completely blocked RVD reconstitutive activity induced by laminar flow. These data indicate that hypotonic shock and flow-associated stress share the same activation mechanism involving G proteins.

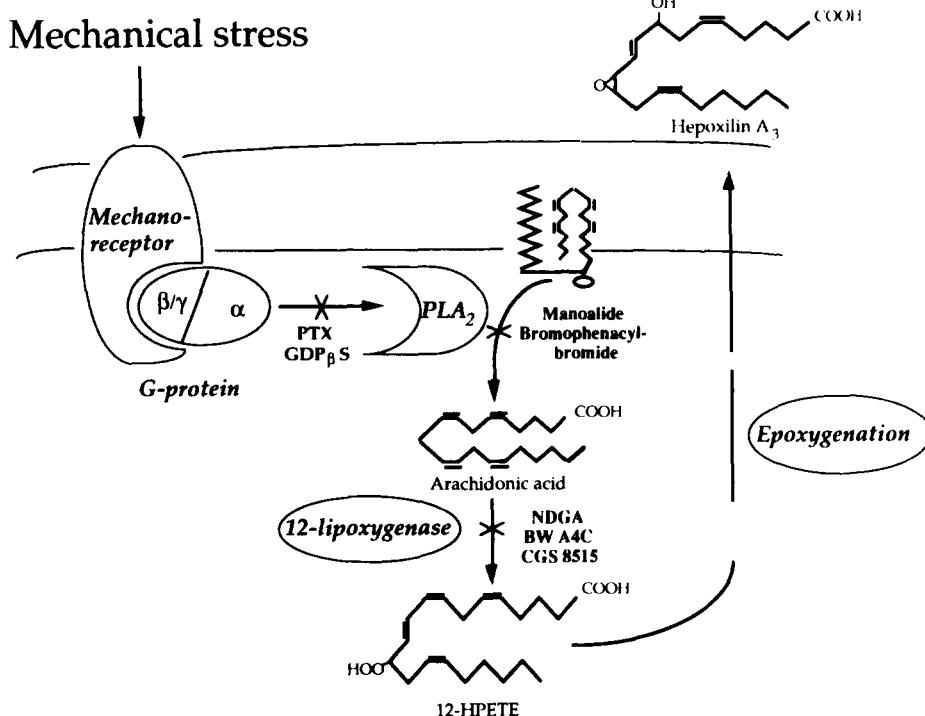


Fig. 6. RVD reconstitution assay of platelets in the presence of NDGA (20 μ M), by platelet-derived isotonic eluate, (200 μ l), from platelets exposed to a flow of 250 cm/sec, in vinyl tubing, 5 cm long, 1 mm, ID. Control, (●); platelets pretreated with GDP_βS, (1 μ M, 30 min), (▲) (representative data, $n = 3$).

Discussion

In this work, we studied the activation mechanism of the RVD response in human platelets. We have demonstrated that the AA metabolism which leads to hepoxilin A₃ formation is initiated by Ca^{2+} -insensitive PLA₂ and that this phospholipase is activated by PTX-sensitive G proteins. This conclusion is based on the following findings: (i) RVD response is inhibited selectively by PLA₂ inhibitors and the site of inhibition is upstream to AA liberation (Fig. 1 and Table). (ii) Hepoxilin A₃ formation is not sensitive to external Ca^{2+} depletion by EGTA (Fig. 2A) or internal Ca^{2+} depletion by BAPTA-AM (Fig. 2C). (iii) RVD response is inhibited by GDP_βS and PTX (Fig. 3). The site of inhibition is upstream to AA release (Fig. 4). (iv) NaF 1 mM induces hepoxilin A₃ formation as tested by the RVD reconstitution assay (Fig. 5). (v) Laminar flow-induced formation of hepoxilin A₃ is inhibited by GDP_βS. We conclude, therefore, that both hypotonic and flow-induced hepoxilin A₃ formation share the same type of mechanical-biochemical-induced activation, which involves both PLA₂ and PTX-sensitive G proteins. This conclusion is mainly based on pharmacological studies. It is possible that some of the agents we used, such as boromophenacyl bromide (Blackwell & Flower, 1983) and wortmannin (Bonser et al., 1991) may have nonspecific effects. However, this conclusion is strongly supported by: (i) the RVD reconstitution approach which locates the site of inhibition and (ii) the use of more than one inhibitor for each target enzyme.

Ca^{2+} -sensitive PLA₂ from human platelets has been purified and characterized (Kim, Kodo & In-

Fig. 7. Model of hypotonic and flow-induced formation of hepoxilin A₃. Application of mechanical stress to the cell surface induces G-protein activation, which is mediated by a surface receptor. The dissociated G protein activates phospholipase A₂ and the sequential release of AA. The AA is further metabolized into hepoxilin A₃ by the 12-lipoxygenase pathway. RVD inhibitors are in boldface. The 12-lipoxygenase inhibitors of RVD were described previously (Margalit & Livne, 1991).

oue, 1988) and the dependence of thromboxane metabolism on Ca²⁺ has been demonstrated (for review, see: Arita, Nakano & Hanasaki, 1989). The existence of Ca²⁺-sensitive and Ca²⁺-insensitive PLA₂ activities has been demonstrated in vascular smooth muscle cells (Miyake & Gross, 1992), pancreatic islet cells (Gross et al., 1993), and platelets (Ballou, DeWitt & Cheung, 1986). Our results indicate that hepoxilin A₃ metabolism is mediated by Ca²⁺-insensitive PLA₂.

The role of G proteins in RVD response was studied using GDP_βS, PTX and NaF. Kucera and Rittenhouse (1988) had argued against the possibility that GDP_βS penetrates human platelet membranes. However, in their system the platelets were incubated with GDP_βS for 1 min, while in our system RVD inhibition is obtained after 30 min of incubation. Therefore, it seems that this G-protein antagonist diffuses the membranes and affects the cells internally. Although it was argued (Ui, 1984) that platelets do not have PTX receptors, we have shown that platelet RVD is inhibited by PTX (Figs. 3B, 4B). One possible explanation for these results is that different signal transduction pathways are placed in different compartments of the same cellu-

lar system and therefore may be affected differently by the same agent.

G proteins are regarded as mediators which couple the receptor to an appropriate "signal generator." It is generally accepted that this type of activation is the result of receptor-ligand interaction (Neer & Clapham, 1988; Hepler & Gilman, 1992). The possibility that a biochemical ligand is generated and released from the platelets prior to G-protein activation was not tested in this work. However, since the minimal period tested, between application of flow-associated stress and the termination of hepoxilin A₃ metabolism by NDGA, was only 5 msec (Margalit & Livne, 1992), it is not apparent that such a mechanism exists. It is suggested, therefore, that mechanical activation causes conformational changes in G-protein coupled receptors in analogy to the conformational changes induced by agonists such as epinephrine (Jackson, 1991). This receptor acts as a mechanoreceptor and transforms the mechanical stimulus to the biochemical response. In Fig. 7 we summarize our findings and illustrate the model for the mechanical-biochemical transduction which leads to hepoxilin A₃ formation in human platelets.

Eicosanoids are known to be formed by mechanical activation of endothelial cells (Frangos et al., 1985; Nollert et al., 1989). Recently, pertussis toxin was found to inhibit Rb^+ currents in rabbit kidney cells (le Maout et al., 1990). Therefore, it seems that the involvement of G proteins in the hypotonic and flow-associated formation of heptoxilin A₃ may represent a general pattern for inducing mechanical activation in different cell types.

This work is dedicated to the memory of Prof. A.A. Livne. It was carried out at the Amelia (Mimi) Rose Laboratory for Cellular Signal Transduction at the Department of Life Sciences, Ben-Gurion University of the Negev. We thank A. Dannon for helpful discussion.

References

Arita, H., Nakano, T., Hanasaki, K. 1989. Thromboxane A₂: Its generation and role in platelet activation. *Prog. Lipid Res.* **28**:273–301

Axelrod, J. 1990. Receptor-mediated activation of phospholipase A₂ and arachidonic acid release in signal transduction. *Biochem. Soc. Trans.* **18**:503–507

Ballou, L.R., DeWitt, L.M., Cheung, W.Y. 1986. Substrate-specific forms of human platelet phospholipase A₂. *J. Biol. Chem.* **261**:3107–3111

Baron, B.M., Limbird, L.E. 1988. Human platelet phospholipase A₂ activity is responsive in vitro to pH and Ca^{2+} variations which parallel those occurring after platelet activation in vivo. *Biochim. Biophys. Acta* **971**:103–111

Bigay, J., Deterre, P., Pfister, C., Chabre, M. 1987. Fluoride complexes of aluminium or beryllium act on G-proteins as reversibly bound analogues of the γ phosphate of GTP. *EMBO J.* **6**:2907–2913

Blackwell, G.J., Flower, R.J. 1983. Inhibition of phospholipase. *Brit. Med. Bull.* **39**:260–264

Bonser, R.W., Thompson, N.T., Randall, R.W., Tateson, J.E., Spacey, G.D., Hodson, H.F., Garland, L.G. 1991. Demethoxyviridin and wortmannin block phospholipase C and D activation in the human neutrophil. *Br. J. Pharmacol.* **103**:1237–1241

Brom, C., Koller, M., Brom, J., Konig, W. 1989. Effect of sodium fluoride on the generation of lipoxygenase products from human polymorphonuclear granulocytes, mononuclear cells and platelets—indication for the involvement of G proteins. *Immunology* **68**:240–246

Burch, R.M., Luini, A., Axelrod, J. 1986. Phospholipase A₂ and phospholipase C are activated by distinct GTP-binding proteins in response to α_1 -adrenergic stimulation in FRTL5 thyroid cells. *Proc. Natl. Acad. Sci. USA* **83**:7201–7205

Christensen, O. 1987. Mediation of cell volume regulation by Ca^{2+} influx through stretch-activated channels. *Nature* **330**:66–68

Fain, J.N. 1990. Regulation of phosphoinositide-specific phospholipase C. *Biochim. Biophys. Acta* **1053**:81–88

Frangos, J.A., Eskin, S.G., McIntire, L.V., Ives, C.L. 1985. Flow effects on prostacyclin production by cultured human endothelial cells. *Science* **227**:1477–1479

Fujita-Yamaguchi, Y., Kathuria, S. 1988. Characterization of receptor tyrosine-specific protein kinases by the use of inhibitors. Staurosporine is a 100-times more potent inhibitor of insulin receptor than IGF-I receptor. *Biochem. Biophys. Res. Commun.* **157**:955–962

Gennity, J.M., Siess, W. 1991. Thrombin inhibits the pertussis-toxin-dependent ADP ribosylation of a novel soluble G_i-protein in human platelets. *Biochem. J.* **279**:643–650

Grinstein, S., Dupre, A., Rothstein, A. 1982. Volume regulation by human lymphocytes. Role of calcium. *J. Gen. Physiol.* **79**:845–868

Gross, R.W., Ramanadham, S., Kruszka, K., Han, X., Turk, J. 1993. Rat and human pancreatic islet cells contain a calcium ion independent phospholipase A₂ activity selective for hydrolysis of arachidonate which is stimulated by adenosine triphosphate and is specifically localized to islet b-cells. *Biochemistry* **32**:327–336

Hepler, J.R., Gilman, A.G. 1992. G proteins. *Trends Biol. Sci.* **17**:383–387

Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1984. Volume induced increase of K^+ and Cl^- permeabilities in Ehrlich ascites tumor cells. Role of internal Ca^{2+} . *J. Membrane Biol.* **78**:211–222

Hoffmann, E.K., Simonsen, L.O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. *Phys. Rev.* **69**:315–382

Jackson, T. 1991. Structure and function of G protein coupled receptors. *Pharmac. Ther.* **50**:425–442

Kim, D.K., Kodo, I., Inoue, K. 1988. Detection in human platelets of phospholipase A₂ activity which preferentially hydrolyzes an arachidonoyl residue. *J. Biochem.* **104**:492–494

Kucera, G.L., Rittenhouse, S.E. 1988. Inhibition by GDP_BS of agonist-activated phospholipase C in human platelets requires cell permeabilization. *Biochem. Biophys. Res. Commun.* **153**:417–421

Lansman, J.B., Hallam, T.J., Rink, T.J. 1987. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? *Nature* **325**:811–813

Lapetina, E.G., Reep, B., Chang, K.-J. 1986. Treatment of human platelets with trypsin, thrombin, or collagen inhibits the pertussis toxin-induced ADP-ribosylation of a 41-kDa protein. *Proc. Natl. Acad. Sci. USA* **83**:5880–5883

le Maout, S., Tauc, M., Koechlin, N., Poujeol, P. 1990. Polarized $^{86}Rb^+$ effluxes in primary cultures of rabbit kidney proximal cells: role of calcium and hypotonicity. *Biochim. Biophys. Acta* **1026**:29–39

Lin, L.-L., Lin, A.Y., Knopf, J.K. 1992. Cytosolic phospholipase A₂ is coupled to hormonally regulated release of arachidonic acid. *Proc. Natl. Acad. Sci. USA* **89**:6147–6151

Lister, M.D., Glaser, K.B., Ulevitch, R.J., Dennis, E.A. 1989. Inhibition studies on the membrane-associated phospholipase A₂ in vitro and prostaglandin E₂ production in vivo of the macrophage-like P388D₁ cell. *J. Biol. Chem.* **264**:8520–8528

Livne, A., Grinstein, S., Rothstein, A. 1987. Volume-regulating behavior of human platelets. *J. Cell. Physiol.* **131**:354–363

Margalit, A., Livne, A.A. 1991. Lipoxygenase product controls the regulatory volume decrease of human platelets. *Platelets* **2**:207–214

Margalit, A., Livne, A.A. 1992. Human platelets exposed to mechanical stresses express a potent lipoxygenase product. *Thromb. Haemostas.* **68**:589–594

Margalit, A., Sofer, Y., Grossman, S., Reynaud, D., Pace-Asciak, C.R., Livne, A.A. 1993. Hepoxilin A₃ is the endogenous lipid mediator opposing hypotonic swelling of human intact platelets. *Proc. Natl. Acad. Sci. USA* **90**:2589–2592

Miyake, R., Gross, R.W. 1992. Multiple phospholipase A₂ activities in canine vascular smooth muscle. *Biochim. Biophys. Acta* **1165**:167–176

Neer, E.J., Clapham, D.E. 1988. Roles of G protein subunits in transmembrane signalling. *Nature* **333**:129–134

Nemenoff, R.A., Winitz, S., Qian, N.X., Vanputten, V., Johnson, G.L., Heasley, L.E. 1993. Phosphorylation and activation of high molecular weight form of phospholipase A₂ by p42 microtubule-associated protein-2 kinase and protein kinase-C. *J. Biol. Chem.* **268**:1960–1965

Nollert, M.U., Hall, E.R., Eskin, S.G., McIntire, L.V. 1989. The effect of shear stress on the uptake and metabolism of arachidonic acid by human endothelial cells. *Biochim. Biophys. Acta* **1005**:72–78

Pace-Asciak, C.R., Aszora, S. 1989. Biosynthesis, catabolism, and biological properties of HPETEs, hydroperoxide derivatives of arachidonic acid. *Free Radical Biol. Med.* **7**:409–433

Sackin, H. 1989. A stretch-activated K⁺ channel sensitive to cell volume. *Proc. Natl. Acad. Sci. USA* **86**:1731–1735

Sarkadi, B., Parker, J.C. 1991. Activation of ion transport pathways by changes in cell volume. *Biochim. Biophys. Acta* **1071**:407–427

Smith, J.B., Selak, M.A., Dangelmaier, C., Daniel, J.L. 1992. Cytosolic calcium as a second messenger for collagen-induced platelet responses. *Biochem. J.* **288**:925–929

Wijkander, J., Sundler, R. 1992. Regulation of arachidonate-mobilizing phospholipase A₂ by phosphorylation via protein kinase C in macrophages. *FEBS Lett.* **311**:299–301

Ui, M. 1984. Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. *Trends Pharmacol. Sci.* **5**:277–279